Pomegranate: High Binding Affinity for PPARγ, a Drug Target for Diabetes Type 2, and Lipid Remodelling in Adipocytes
نویسندگان
چکیده
Cellular free fatty acids are toxic for cells, which also contributes to the pathogenesis of cardiovascular diseases and metabolic syndrome. Cells handle so-called lipotoxicity resulting by an excess of free fatty acids via triglyceride accumulation [1]. This happens not only in adipocytes, but in all cells; the amount and size of lipid droplets in adipocytes is much bigger, as these cells are meant to function as lipid storage of the organism. Meanwhile is the triglyceride accumulation in non-adipose tissue a consequence of an acute free fatty acid excess and represents a defence mechanism against lipotoxicity. The results from Paar et al.[2] which show a de novo synthesis of micro Lipid Droplets (mLDs) during lipolysis, implicate that mLD formation could not only pose as facilitation of lipolysis by increasing the working surface for lipases, but protects also cells from lipotoxicity by relocation of free fatty acids into lipid droplets. The formation of mLDs is linked with the ability of the cell to re-esterify fatty acids. When this is blocked, mLDs cannot be generated [3]. mLDs are active sites of lipolysis [3] and compounds that promote the formation of mLDs are potential drugs for the treatment of obesity and metabolic syndrome.
منابع مشابه
Ginsenoside Rg5: Rk1 Exerts an Anti-obesity Effect on 3T3-L1 Cell Line by the Downregulation of PPARγ and CEBPα
Background: Obesity, a global health problem and a chronic disease, is associated with increased risk of developing type 2 diabetes and coronary heart diseases. A wide variety of natural remedies have been explored for their obesity treatment potential. Objective: The anti-adipogenic effect of ginsenoside Rg5:Rk1 (Rg5:Rk1) on 3T3-L1 mature adipocytes was investigated. Materials and ...
متن کاملEvaluation of the Synuclein-γ (SNCG) Gene as a PPARγ Target in Murine Adipocytes, Dorsal Root Ganglia Somatosensory Neurons, and Human Adipose Tissue
Recent evidence in adipocytes points to a role for synuclein-γ in metabolism and lipid droplet dynamics, but interestingly this factor is also robustly expressed in peripheral neurons. Specific regulation of the synuclein-γ gene (Sncg) by PPARγ requires further evaluation, especially in peripheral neurons, prompting us to test if Sncg is a bona fide PPARγ target in murine adipocytes and periphe...
متن کاملRoles of activin receptor-like kinase 7 signaling and its target, peroxisome proliferator-activated receptor γ, in lean and obese adipocytes
We recently discovered a novel signaling pathway involving activin receptor-like kinase 7 (ALK7), one of the type I transforming growth factor-β receptors. ALK7 and activated Smads 2, 3, and 4 inhibit the master regulators of adipogenesis, CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ) specifically in differentiated adipocytes, but surprisingl...
متن کاملPPARγ Regulates Expression of Carbohydrate Sulfotransferase 11 (CHST11/C4ST1), a Regulator of LPL Cell Surface Binding
The transcription factor PPARγ is the key regulator of adipocyte differentiation, function and maintenance, and the cellular target of the insulin-sensitizing thiazolidinediones. Identification and functional characterization of genes regulated by PPARγ will therefore lead to a better understanding of adipocyte biology and may also contribute to the development of new anti-diabetic drugs. Here,...
متن کاملZataria multiflora increases insulin sensitivity and PPARγ gene expression in high fructose fed insulin resistant rats
Objective(s):In insulin resistance, the insulin action in liver, muscles and adipocytes decreases and result in hyperglycemia, dyslipidemia and hyperinsulinemia. In this study we evaluate the effect of Zataria multiflora extract on insulin sensitivity in high fructose fed insulin resistant rats, since this extract was shown antihyperglycemic effect in streptozotocin induced diabetes in rats. ...
متن کامل